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We have developed and implemented a load balancing scheme for
particle-in-cell (PIC} codes which use the GCPIC algorithm on MIMD
computers. The algorithm has been applied to a twe-dimensional elec-
trostatic plasma PIC simulation code using 1D partitions for particles
and fields. The code is a parallelized version of a well-benchmarked
sequential plasma PIC code which uses quadratic field and charge
interpolation and an FFT-based Poisson solver. This code has been run
on the Caltech/JPL Mark Hifp, NCUBE2, and Intel i860 Gamma hyper-
cube computers. Particle load balance is maintained by readjusting the
.GCPIC primary partitions whenever any processor's particle count
exceeds a certain imbalance threshold. The new partition boundaries
are calculated based upon a 1D number density function computed
from the grid deposited charge distribution. Dynamic load balancing is
found to be effective when the execution time of the particle push
dominates over execution time for the field solve. For a large class of
plasma simulations, we find that dynamic load balancing is not
required; static initial partitions intelligently chosen can work just as
well. Parallel efficiency for the particle push is very high (90-100%)
and scales with number of processors. Parallel efficiency for the
FFT-based field solver is poor in this implementation and directly
impacts the effectiveness of the load balancing scheme. © 1993
Academic Press, inc.

I. INTRODUCTION

The most powerful general purpose supercomputers
today are of the massively parallel, distributed memory
type. These machines consists of many processors, each with
their own local memory, working either synchronously
(SIMD-—single instruction multiple data architectures) or
asynchronously {MIMD—multiple instruction muitiple
data architectures) on a single problem. Programming these
machines [1] efficiently generally requires special techni-
ques or algorithms which differ from their corresponding
sequential implementations, due to the existence of dis-
tributed memory and the latency of accessing memory
which i1s not local to a given processor. These techniques
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may be nothing more complicated than properly mapping
the major data arrays onto the collection of processors and
their memories, as is the case for finite difference and finite
element algorithms [27]. In other cases, an entirely new
approach to paralielism, such as functional decomposition
[3], might be required.

For plasma PIC simulations, some special considerations
enter into the strategy for implementation on parallel
computers [4]. A plasma PIC simulation [5] follows the
evolution in time of the trajectories of thousands to millions
of charged particles in their self-consistent electromagnetic
fields, as well as any externally applied forces which might
be present. The particles may have positions anywhere
within the simulation space, while the fields and forces are
defined at discrete points on a grid within the space. The
code consists of two major sections, which we refer to as the
push and the field solve. In the push, the positions and
velocities of all of the particles are advanced some small
amount in time under the influence of forces which are inter-
polated to the particle positions from the grid, The charge
{and current, for electromagnetic simulations) at the new
particle positions is interpolated back onto the grid for the
field solve. Then the field solve, using the new gridded
charge distribution, advances the field quantities in time. To
implement a plasma PIC code on these massively parallel
machines, it is clear that somehow both the particles and
the fields must be appropriately distributed among the
processors and their memory.

We have previously developed an algorithm for
implementing PIC simulation codes on MIMD computers
which we have called the GCPIC [6] algorithm, In GCPIC,
particles are divided among processors by partitioning the
simulation space among processors so that each partition
contains approximately the same number of particles. This
algorithm has been shown to be an effective means for
parallelizing PIC simulations in both 1D and 2D {7, 8]. It
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was recognized that during execution of a simulation, par-
ticles couid potentially migrate among processors creating
situations where the number of particles assigned to each
processor deviated substantially from the average. This
condition of particle load imbalance would lead to a
slowing down of the code execution, since processors must
synchronize their activities at several times during the
main loop. The execution time of the loop in GCPIC is
determined by the sum of the execution times between
synchronization points of the slowest (most heavily loaded)
processors. We have now developed a method for dynami-
cally balancing the computational load among processors
as the simulation proceeds. An important consideration in
any algorithm for load balancing particles is that it scale at
most linearly with the number of particles, since the rest of
the PIC algorithm already does so. Therefore, any method
which requires particle sorting (an nlogn process) is
undesirable. Our method is based upon a one-dimensional
grid based number density function computed from the
interpolated charge distributions. Its direct cost, therefore,
scales with the size of the grid and is independent of the
number of particles.

In many PIC simulations, a plasma’s tendency toward
uniform density will make load balancing unnecessary. It is
also unnecessary in other cases, such as tokamak modeling,
where the expected density distribution is known and
the domain can be decomposed at the start to give load
balancing. However, in many other cases, particularly
device computations, the density distribution changes
dramatically and dynamic load balancing will be essential
to obtain efficient code.

In the sections that follow, we will briefly review the
GCPIC algorithm as it has been applied to our 2D elec-
trostatic PIC code. We will look at the code efficiency on
both particle load balanced and unbalanced problems.
Then the load balancing algorithm wiil be presented and its
performance discussed. Finally, we will make some remarks
concerning the general load balancing problem for 3D PIC
simulations in the conciusions.

Il. THE 2D PARALLEL ELECTROSTATIC PIC CODE

The parallel code [7] is based on a well-benchmarked 2D
sequential electrostatic PIC code from UCLA called BEPS
[9]. This code may be bounded or periodic in the x direc-
tion and periodic in the y direction. A static externally
imposed magnetic field is allowed, and three velocity space
components for each particle are tracked. The field solver is
FFT-based. The code includes integrated graphics for
potential, density, and velocity space diagnostics. It has also
recently been extended to electromagnetic simulations [ 10].

In the GCPIC algorithm, there are two major data
decompositions which map particles and fields to
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processors. In the primary decomposition, particles are
assigned to processors based upon physical space partition
boundaries so that all processors have approximately equal
numbers of particles. This decomposition is designed to
make the particle push section load balanced. So that each
particle is uniquely assigned to a single processor, the parti-
tions are constructed so as to be non-overlapping. In order
to do the grid interpolation required for force evaluations
and charge deposition, the field grid must also be
distributed among processors such that all grid points
within the partition boundaries of a given processor, plus
additional points outside and adjacent to the partition
boundaries, are present in the processor’s memory. This
results in the need to duplicate some grid points in multiple
processors, We refer to these duplicate grid points as guard
cells.

The second data decomposition is designed to make the
field solve load balanced, and is referred to as the secondary
decomposition. Since the field solve computation is propor-
tional to the number of grid points, the secondary decom-
position assigns approximately equal numbers of grid
points to processors in a manner which is most efficient for
the fieid solver method. For our FFT-based solver, each
grid point is uniquely assigned to a single processor. In this
case it is clear that at least guard cell information must be
communicated among processors when switching between
the push and field solve phases of GCPIC, and, in the
general case, some major redistribution of the field data
must take place.

The particle decomposition among processors also
presents a situation not encountered on sequential or shared
memory computers. After a particle’s position and velocity
have been advanced in time, it may find itself outside of its
parent processor’s partition boundaries. Depending upon
the number of guard cells available and the distance outside
the partition, the deposition of the particle’s charge may
require grid locations not available in its parent processor.
Therefore, after the position and velocity update, but before
the charge deposition, particles which have crossed
partition boundaries must be migrated to the processors
appropriate to the partitions which they have entered.

Applying GCPIC to the 2D code resuits in an iteration
scheme as detailed in Fig. 1. There are three main sections
which are carried over directly from the sequential version.
The sequential push is now split into two parts: a push,
in which all particles’ positions and velocities are time
advanced; and a deposit, in which all particles’ charges are
interpolated onto the grid. The third section is the Poisson
solver, but with the 2ID FFTs replaced by 2D parallel
distributed FFTs. GCPIC introduces two field-related
communications, or redistributions, in converting field
information between the primary, or particle, decom-
position, and the secondary, or field, decomposition. There
is also the particle mover which communicates particles
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The major tasks in the main loop of the General Concurrent PIC Algorithm. The items in rounded boxes are found in a sequential PIC code,

while the items in square boxes are additions for operation on concurrent computers.

which have exited their processor’s partition boundaries to
their new processor assignments.

In the present implementation, the 2D parallel FFT used
in the Poisson solver consists of two sets of 11D sequential
FFTs done in parallel on each dimension, in the same way
that 2D FFTs may be vectorized. The field decomposition
for the solver is therefore by rows, as in Fig. 2a. Each pro-
cessors has all of the x coordinate for a range of y; we refer
to this decomposition as the x-space field decomposition.
Groups of rows are assigned to individual processors, which

can perform the x — 4k, FFTs in parailel without inter-
processor communication. Then a redistribution of data
takes place (which amounts to a global array transpose) so
that each processor now has compiete columns. The v - &,
FFTs can now be done in parallel without inter-processor
communication. The k-space ficld decomposition is shown
in Fig. 2b. It is in this decomposition that Poisson’s equa-
tion is solved and the electric field components calculated.
The inverse 2D FFT proceeds in exactly the reverse of the
forward transform. A total of three FFTs are necessary: one

a) x-space field decomposirion

b) k-space field decomposition

Proc 3

FIG. 2. The two field decompositions illustrated for four processors. In real space, the grid is distributed among processers in groups of contiguous
rows. In transform space, the grid is distributed in groups of contiguous columns. The 2D paralle]l FFT transforms the grid from one partition to the

other.
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forward FFT for the charge density and two inverse FFTs
for the two eiectric field components.

implicit in this field solver implementation is the assump-
tion that the number of grid points in each dimension is
some integer multiple of the number of processors, since we
do not currently use distributed 1D FFTs. Qur 1D FFTs are
restricted to power-of-two lengths; therefore the number of
processors which we use is aiso restricted to be a power of
two.

The particle decomposition used in our initial implemen-
tation was a 1D decomposition matched to the x-space field
decomposition. We refer to it as the static regular partition,
since the partitions were of equai width and remained fixed
throughout the course of a simulation. A four-processor
example is illustrated in Fig. 3. The partition boundaries are
defined by

L
= Y 1
w=p Npmc ’ ( a)
L,
ye=(p+1)=— (1b)

N proc

where y, is the left boundary, y, is the right boundary, L, is
the length of the system (an integer in normalized coor-
dinates) in the y direction, N, is the number of processors,
and p is the logical processor number, beginning with zero,
Note that these boundaries are integers. (The logical
processor number is a means of identilying a processor’s
position in a communication topology; in this instance, it
corresponds to a processor’s position in a ring of processors
where one processor has arbitrarily been designated as
Processor 0). The partition itself is defined by

nsy<y. {2}
The quadratic interpolation scheme uses a nine-point stencil
" centered on the grid point nearest the particle. For particies

n(xy)
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in a partition defined by Eq. (1), the field grid rows defined
by
(3a)

nylef[=y}_'11

n_vright:yr+ 1! (Bb)
arc required to perform the interpolation. (Values of n,,
below zero and n, g, above L, — 1 are handled according
to the boundary condition for the y dimension, which for
our code is periodic.) This amounts to requiring one guard
cell row to the left and two guard cell rows to the right; the
asymmetry here is due to the fact that the left bounday is in
the domain, whereas the right boundary is in the next
processor’s domain (Eq. (2)).

The static regular 1D partition has several advantages.
The transformation between particle partition and ficld par-
tition involves only the guard cell rows, since the grid points
which lie within a processor’s particle partition boundaries
are the same points as those of the processor’s field
partition. By reserving extra rows at the beginning and end
of the field arrays, only the guard cell data need actually
be moved in the transformation. The logical processor
numbers can be selected so as to map processors into a
physical ring on the communications network; oniy nearest
neighbor communication will then be required for the fieid
transformations, as well as for the particle mover. Finally,
by partitioning the periodic direction of the simulation, the
likelihood of significant load imbalance is reduced. While
this paper treats only 1D parallel decomposition of the
simulation domain, the methods presented here can be
extended to higher dimensional simulations and decomposi-
tions. This will be discussed in the conclusions.

We have measured the parallel efficiency of our
implémentation on the Caltech/JPL Mark [1Ifp Hypercube
and on the Intel iIPSC/860 Gamma hypercube. On each
machine, we have run a lower hybrid heating simulation
[117] consisting of 235,136 electrons and ions on a 64 x 256

y\\,._x//
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FI1G. 3. The field grid assignment according to the static regular partition. Each processor receives an equal number of contiguous rows of the field
grid. In addition, each processor requires additional rows of guard cells for interpolation of charge and field quantities. The guard rows must be exchanged
with neighboring processors. A four-processor example is illustrated. Guard rows are depicted only for processor 0.
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TABLE]

Time per Iteration for the Push and Solver Sections of the
Parallel Code for the Lower Hybrid Heating Simulation Run
on the Mark IIIfp and Intel i860 Gamma Machines for Various
Numbers of Processors

Mark IIfp Intel 1860 Gamma
Processors Push Solver Push Solver
(s) (s) (s) (s}
1 26.4 339 527 62
2 13.2 L70 265 40
4 6.66 1.00 1.34 31
8 334 &3 L8 29
16 1.68 .50 35 32
32 85 45 19 35

field grid for 500 time steps. The simulation was repeated
while varying the number of processors employed. The
execution time of the push section and the field solve section
of the main loop (defined for GCPIC in Fig. 1) were timed
and averaged for the first 10 timesteps, and are presented in
Table I. A parallel efficiency number E can be defined for
the code sections as

E=T,/nT,, (4)
where 1 is the number of processors, T, is the execution time

on n processors, and T is the execution time on one pro-
cessor. These numbers, calculated from Table I, are plotted
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in Fig. 4. The push efficiency is close to 100% through 32
processors for both machines. The Mark IIIfp curve is quite
flat, indicating that overhead due to interprocessor com-
munication is unimportant in this case. The Intel machine
exhibits a declining efficiency curve, due to communication
overhead. The two machines behave differently because
their computation speed/communication speed ratios are
different (the Intel processors are perhaps a factor of 4 faster
than the Mark IIlfp processors, while the communication
speeds are about the same). The field solver is dominated by
three 2D parallel FFTs, which rapidly become dominated
by inter-processor communication, hence the precipitous
drop in solver efficiency. Again, the Intel machine is lower in
efficiency due to the difference in speed ratio.

The fact that the FFTs are communications-dominated
can be seen in Table I; note that for the Intel, the solver time
begins to increase with the number of processors above
eight processors. This increase results from the increase in
the time to perform the data transpose illustrated in Fig. 2.
The 0.62 s solver time on one Intel node results from an
approximate FFT cpu time (for the three FFTs) of 0.5 s and
a guard cell filling time of about 0.1 s. The guard cell time is
constant as the number of processors increases and the
actual FFT-cpu time decrease inversely with the number of
processors, On eight processors, the three costs are about
comparable; beyond this, the time for the data transpose
dominates the solver time. (Our one processor’s FFT cpu
time 1s considerably larger than the Intel-supplied one pro-

100% e - -
90% | \\
;
80% =
L] Solver — Intel
70% -
60% + Solver — Mark Illfp
o
=
'g 30% - < Push - Intel
&
= 40% = Push — Mark ]]ifﬁ
30% =
20% —
10% -
0% T 1 ) T ) 1 1) T ) 1 ¥ L ] T 1
0 4 8 12 16 20 24 28 32

Number of Processors

FIG. 4. Parallel efficiency versus the number of processors for the push and solver code sections as measured on the Mark [11fp Hypercube and the
Intel i860 Gamma. The Inte] machine has lower efficiency in both cases due to its higher computation/communication speed ratio.
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TABLEII

Push Time per Particle and Total Execution Time for a Lower
Hybrid Heating Simulation Using 235,136 Particles on a
64 % 256 grid

Push time  Total execution time
(ms/particle) (s)
Mark IlIfp—32 processors 36 845
Intel 1860 Gamma—32 processors 8 481
Cray 24 processors 1.5 268

(multitasked push)

Note. The simulation was run for 500 time steps.

cessor. FFT, which was not available at the time this work
was done; however, since the actual FFT cpu time is a small
fraction of the solver time, this is unimportant for the work
here.)

For comparison, we have also run the original sequential
code on a four-processor Cray 2 with a multitasked push.
The total execution time was measured along with the
per-particle push time. These numbers, along with the
corresponding hypercube machine numbers are listed in
Table II. Although the Intel machine achieves the best per-
. particle push time, the Cray 2 has the lowest total execution
time for the simulation. This is entirely attributable to the
poor performance of the 2D FFTs on the hypercube
machines.

111, THE DYNAMIC LOAD BALANCING ALGORITHM

In the lower hybrid heating simulation, a standing lower
hybrid wave is excited by an antenna atong the y direction.
When the wave is driven at resonance, a large amplitude
standing wave can be excited. If the simulation is continued
long enough, the ponderomotive force due to the large
amplitude standing wave will begin to dig out a density
cavity in the plasma. This cavity will grow until the antenna
detunes from the allowed lower hybrid modes (due to the
non-linear density modification). The lower hybrid wave,
along with the cavity will then collapse on an acoustic time
scale. Eventually, the antenna will begin to resonantly drive
a new lower hybrid wave, repeating the cycle.

The density cavities can be seen in the ion density con-
tours of Fig. 5 which were plotted at 1 = 228w ;,‘ {1140 time
steps} into the simulation. For this case, a total of 524,288
particles were used on a 128 x 128 field grid. These density
cavities are aligned paraliel to the 1D regular static parti-
tions used in the hypercube code, resulting in significant
particle load imbalance during part of the simulation. We
have plotted in Fig, 6 the maximum and minimum number
of particles (electrons and ions) in any processor at each
time step during the first 1500 time steps in a run done on
a 64-processor hypercube. At the worst point, there is
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FIG. 5. lon density contours plotted at = 2280);' in a lower hybrid
heating simulation. A standing lower hybrid wave is being driven along the
y axis. The ponderomotive effect digs troughs in density which are parallel
to the particle partitions. The non-uniform distribution of particles among
partitions results in load imbalance.

approximately a 7000 particle difference between the
processor with the largest particle count (~12,000) and the
processor with the smallest particle count { ~ 5,000), which
is a factor of 2.4 difference in loads. If this were a static situa-
tion throughout the course of the simulation, we could
initially set our partitions for particle load balance which
could remain fixed throughout the run. But since the load
imbalance evolves, some kind of dynamic repartitioning is
necessary in this case to maintain optimal push efficiency.

Sorting the particles by coordinate would allow an
algorithm to determine the partition boundaries which give
perfect load balance. However, the best sorting algorithms
are order N, log(#,) processes, where &V, is the number of
particles. Even though repartitioning is not done at every
iteration step, the cost of an order N, log(N,) repartition
would quickly overtake the order &, push as the number of
particles N, becomes large. Perfect load balance is not even
necessary, since at the next time step the load balance will
begin to degrade. What is desired is a low cost method for
determining new partition boundaries which gives good
load balance.

Our method for defining new partition boundaries uses
the existing charge deposition to the grid which takes place
at every time step to construct a grid-based 1D number
density function along the partition direction. The charge
density arrays for the electrons and ions are summed over
their x coordinates and, after being weighted by the inverse
of their species charge to produce a number density, the
sums are accumulated in a number density array. In Fig. 7
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FIG. 6. The maximum and minimum particle counts in any processor at each timestep during the lower hybrid heating simulation for the cases of
static fixed partitions and dynamic load balanced partitions run on 64 processors. There are five timesteps per unit simulation time. With the fixed
partitions, particles conicentrate in processors whose partitions happen to coincide with the density peaks depicted in Fig. 5, resulting in load imbalance.
Dynamic repartitioning limits the maximum excursion from ideal load balance,
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FIG. 7. The 1D number density function used in calculating partition boundaries for dynamic load balancing. The function was computed at the
same timestep as the density contours of Fig. 5. The locaticn of the particle partition boundaries for a static regular decomposition and a dynamic load
balanced decomposition computed from the function have been added for comparison.
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we plot the number density function calculated at the same
timestep as the contour plot of Fig. 5. The new partition
boundaries are calculated by solving the following equation
for y, in each processor:

N,
N

pt-=["dyn(z) (5)
0

proc
Here, again, N, is the total number of particles in the
simuiation, ¥, is the total number of processors, p is the
logical processor number, y, has been previously defined as
the left partition boundary, and »{ ) is the grid based den-
sity function described above. The right partition boundary
for each processor is simply the left partition boundary of
the next higher number processor, i.e.,

y(py=yip+1) (6)

and we have defined
y!(Nproc)EL_r' (7)

Again, L is the system length in the y direction. The num-
ber density function is computed in parallel piecewise by
processor in the old partition, then globally combined so
that each processor has its own copy of the complete func-
tion. Each processor computes its own left boundary in
parallel from Eq.(5) and then receives from its right
neighbor its right boundary. The cost of this operation
is independent of the number of particles. Rather, it
scales with the number of grid points. Particle partition
boundaries for 64 processors which resulted from the

Particle Push

viXBo

dv; _Gi .
& - E ) +

dt )
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density function of Fig. 7 are noted in the figure, along with
the boundaries for the static regular partition.

Determining when repartitioning is necessary is a trivial
task. Each processor knows what its ideal particle count
should be and can compare that number to its current par-
ticle count, An imbalance threshold is set at the beginning of
the simulation. At every time step, before the charge deposi-
tion, each processor determines whether its current particle
count exceeds the ideal by more than the imbalance
threshold. If any processor signals a threshold exceeded
condition, a repartition is undertaken.

For dynamically changing particle partitions, the trans-
formation between the particle and field partitions is no
longer a simple nearest neighbor exchange of guard cell
rows. The field grid rows required for interpolation in each
processor are now given by the expressions:

e = INT(y,+0.5) -1,
ny right = INT(yr + 05) + 1!

{8a})
(8b)

where INT is the truncate to integer function. A general
means of exchanging grid information among processors
must now be provided. In some cases, the section of the grid
assigned to a processor in the field partition will be com-
pletely different from the section assigned to it in the particle
partition. To accomplish the transformation from one parti-
tion to the other, we maintain tables of row destinations for
both transform directions which are computed at reparti-
tion time. Processor-addressed generalized communication
calls available on the hypercubes are used in conjunction
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FIG. 8. GCPIC with dynamic load balancing. An additional step is performed in the timestepping loop to check for particle load imbalance. If load
balance is within acceptable limits, the loop continues normalty. If the load imbalance threshold is exceeded, repartitioning takes place. Immediate
repartitioning requires backing up to the particle mover in the loop. Delayed repartitioning only notes the number density function for use at the next

timestep.
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with these tables to send each row of field grid or charge grid
to its appropriate destination. This method of communica-
tion is more costly than the nearest neighbor exchange
which can be used in the regular partition case.

To implement repartitioning for dynamic load balancing,
the iteration loop illustrated in Fig. 1 is modified to that of
Fig. 8. After the charge deposition, particle load balance is
checked. If a repartition is required, the 1D number density
function is computed from the current 2D charge density
grids. Two possible ways of proceeding now are possible:

An immediate repartition could be undertaken. In this
case, the new boundaries and field transformation tables are
computed. Then control is transferred back to the particle
mover to recheck current particle locations and move par-
ticles to new processors as necessary. Next a second charge
deposition is done in the new partition. The load balance
check is disabled for this second pass to prevent any
possibility of an infinite loop condition, so control passes to
the field solver,

The other possibility is to delay the repartitioning until
the next particle move which follows every push. In this
case, the 1D number density function is saved until after the
next particle advance, but before particles are moved among
processors due to excursion across particle boundaries. At

2
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this point the new partitions and field transformation tables
are computed. Then the particle move proceeds normally
with the new partition boundaries.

The delayed repartition requires no extra charge deposi-
tion as does the immediate repartition, but it will never
achieve as good a rebalance result since the partition mnfor-
mation used is always one time step old. This will turn out
to be unimportant, as we will demonstrate in the next
section. Dynamic repartitioning when subcycling is used for
one of the species is also easily accomplished using this
scheme. One can simply force an extra push of the subcycle
species coincident with the load balancing or delay the load
balancing until the next subcycle push. We would favor the
delayed approach for reasons of simplicity.

The question of when to rebalance remains an issue. [t is
counterproductive to attempt load balancing at every time
step, since there is some overhead associated with the con-
struction of the 1D number density function and the com-
putation of new partitions and field transformation tables.
The optimum threshold level is a complicated function of
the size of the grid, number of particles, and the cost of com-
munications. Therefore, we have adopted an experimental
approach to determining a threshold for load balancing. We
report results for several threshold levels in the next section.
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FIG. 9. Push and solver execution times at each timestep using static and dynamic particle partitions, run on a 64 processor Mark I1Hp Hypercube.
The simulation parameters were the same as those of Fig. 5. For dynamic partitioning, both immediate and delayed repartitioning methods were run.
Solver execution times were virtually identical for both dynamic partitioning methods; only one curve is distinguishable. The push time is shown for
delayed repartitioning. The spikes in the repartition push execution times correspend to timesteps at which new partitions were calculated. The immediate
repartition push times for normal timesteps are essentially the same as those of the delayed repartition push. For repartition time steps, the immediate

repartition increases the cost by about 30%.
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IV. RESULTS

We have implemented the load balancing scheme
described above in our 2D parailel code and compared code
performance with and without load balancing for several
situations, In Fig. 6 we have also plotted the maximum and
minimum processor particle loads at each time step for the
lower hybrid heating simulation run with dynamic load
balancing. A load imbalance threshoid of 0.08 was used for
this run (i.e., when the number of particles in any one
processor exceeded the ideal particle load by 8%, load
rebalancing was undertaken). Load rebalancing does not
take piace for some time, and then only sporadicaliy at first.
The points at which a rebalance takes place are clear from
the vertical jumps in particle number. Obviously, the load
imbalance never significantly exceeded 8 % in this run, while
the fixed partition run suffered from imbalances which were
50% at times.

The overhead of using dynamic load balancing may be
ohserved by looking at the execution times for the push and
field solve code sections in comparisons to those from the
fixed (static regular) partition code. In Fig.9 we have
plotted these times at every timestep for the lower hybrid
heating simulation of Fig. 5 described previously. Runs were
done with fixed partitioning, dynamic load balancing with
immediate repartitioning, and dynamic load balancing with
delayed repartitioning. An imbalance threshold of 6% was
used in the dynamic load balancing cases.

Figure 9 shows the times for the field solve and the push
times for the cases static case and the case with delayed
repartitioning. The overall improvement in the push time
with load balancing is apparent. The push time for the static
fixed partition case shows a gradual increase in the push
time as the particle distribution becomes nonuniform. The
push time for the delayed repartition case shows small
increases preceding the spikes which occur at time steps
with repartitioning; following repartitioning, the push time
drops back down te approximately the minimum “load
balanced” level. The overhead for a delayed repartitioning
step i1s actually spread over two consecutive time steps, since
the calculation of the 1D number density function takes
place at the time step before the actual repartitioning. The
time to do this calculation is too smail to be observed here.

The times for the field solver were virtually identical for
the immediate and delayed repartitioning runs. The dif-
ference in times for the field solver between the fixed regular
partition and dynamic partition cases (Fig. 9) is due entirely
to the difference in communication schemes used in trans-
forming from the field decomposition to the particle decom-
position. {Recall that we have assigned the field to particle
partition transformation to the field solver and the particle
to field partition transformation to the push.) The fixed par-
tition run uses nearest neighbor exchanges which involve
only the guard cell information, while the dynamic partition
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run requires the general communication scheme involving
all field quantities. This cost is also apparent in the time
difference between the fixed and dynamic partition push
seen in Fig. 9 at the beginning of the run, where the particle
load is still uniform across processors. The overhead of the
generalized communications scheme makes the dynamic
load baiancing code slower than the fixed partition code for
problems which do not exhibit particle load imbalance.
Thus dynamic load balancing is not always a desirable
feature to be inciuded. It should be emphasized that this
overhead is present in every timestep and is the result of
having to allow for the transformation between a regular
partitioning of the grid (required for load balancing the
field solver) and an irregular partitioning of the grid
frequired for load balancing the push when large density
inhomogeneity is present). Even if the partitions never
change, simply allowing for the possibility adds-a fixed
additional cost to the solver and the push. This cost scales
with the ratio of grid size to the number of processors and
is independent of the number of particles.

For the load-balanced cases, the cost of an immediate
repartition push time step is about 30% higher than the
delayed repartition push time step, due to the extra particle
reassignment and charge deposition. For normal push time
steps, the push times for the two schemes are essentially the
same. For time steps when no repartitioning is required, the
push time differs from ideal by the small residual load
imbalance and the partition transformation overhead.
There are a similar number of repartition steps in each
scheme during the course of the runs. The total execution
times for the two cases, however, are almost identical
(within a few tenths of a percent). Apparently, the
immediate repartition scheme makes up the cost of the extra
charge deposition and particle reassignment by achieving a
better average load balance (and push execution time). This
characteristic appears to be a general one; in every com-
parison we have done between the immediate and delayed
repartitioning, we have failed to observe a significant
difference in total execution time between the two.

To judge the effectiveness of dynamic load balancing, we
ran the same physics simulation {lower hybrid heating at
resonance) with dynamic load balancing and with static
regular partitioning, for several different grid sizes, total
particle counts, and number of processors. In all cases, the
maximum particle load imbalance observed during the
simulation using the static regular partitioning exceeded
50%. For a given grid size, total number of particles,
and total number of processors, we ran the dynamic load
balanced code with several imbalance thresholds and com-
pared the total execution time to that for the static regular
partition code. The run length was chosen in each case so
that the simulation ran through one complete cycle of cavity
formation and collapse. The total execution time for each
run was measured and the ratio of load-balanced run time
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FIG, 10. Relative total run times for several dynamic load balancing cases as a function of imbalance threshold. The points plotted are the ratio of
totat execution times on a Mark I1lfp Hypercube for dynamic load balanced runs compared to the static partition run using the same simulation
parameters. The runs with 16,128 particles were done using a 32 x 128 grid. The runs of 64 processors were done using a 128 x 128 grid. Dynamic load
balancing can be counterproductive if the particle push does not dominate the main loop, as is the case for the runs using 16,128 particles.

to regular partition run time was computed. In Fig. 10 we
have plotted these ratios for the various test cases as a func-
tion of the imbalance threshold. The most striking result
shown here is that load balancing is not always better than
the static regular partitioning we have used previously. For
the smaller simulations, the extra overhead from the use of
generalized communications for the partition transforma-
tions nullified any gain due to better particle load balance.
It was necessary to go to large numbers of particles
and higher numbers of processors before dynamic load
balancing became effective. The second observation to be
made is that the variation of run time with imbalance
threshold is fairly flat over some range, indicating that the
particular value of the threshold is not critical for best
performance.

Dynamic load balancing appears to be useful only when
the particle push time dominates the main loop execution
time and significant load imbalance develops during the
simulation. These conditions depend upon machine charac-
teristics. Refer again to Table I. On the Mark 1fp for the
benchmark problem, the particle push time always
dominates the iteration loop. Dynamic load balancing is
potentially useful here. On the Intel 1860 Gamma machine,
the field solver dominates on 32 processors, Dynamic load

balancing would be counterproductive for this case. The
push dominance condition places a lower limit on particle
number density in the simulation. Assuming that the FFT-
based solver is executing at its most inefficient limit of two
1D FFTs per processor, this means particle number
densities on the order of eight per cell are the approximate
break-even point for the Mark IIIfp Hypercube. On other
MIMD computers, this number will be different due the dif-
ferent computation/communication speed ratio. For higher
ratio machines, like the Intel Gamma machine, the number
will be higher. The cost for dynamic load balancing is
dominated by the cost of the generalized communications
required for the field redistributions. Any improvement
must come from a more efficient field redistribution.

V. CONCLUSIONS

We have implemented a method for dynamic load
balancing of particles in a 21> plasma PIC simulation code
which runs on MIMD computers. The code has previously
used a static regular 1D partition of particles among
processors. The 2D gridded charge density functions which
arise from the interpolation of particle charge to the field
grid in preparation for the field solver are used to construct,
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in parallel, a 1D number density function. New partition
boundaries which result in particle load balance among the
processors are computed from this function. Load balancing
is undertaken whenever any single processor’s particle
count exceeds the ideal particle count by some threshold
fraction, typically around 6%. The variation of total
execution time as a function of threshold fraction is fairly
constant throughout some range, provided the [raction is
targe enough.

Load balancing is found to be counterproductive, com-
pared to the static regular partitions used previously, uniess
the particle push dominates over the field solver, and signifi-
cant particle load imbalance develops. Since the particle
push parallelizes with high efficiency, while our FFT-based
field solver does not, the condition of push dominance is not
as eastly achicved as it is on sequential machines. The par-
ticle push must dominate execution because the extra over-
head associated with generalized communication of field
quantities between the particle decomposition and the fields
decomposition is substantial. Gains in push efficiency must

exceed this overhead cost before dynamic load balancing

becomes useful. For fusion or space plasma simulations
with this field solver, a judicious choice of static regular par-
titions will result in acceptable particle load balance in all
but the most non-uniform of density variations. It is only for
large dynamic density variations that load balancing will
ever be required when using this field solver. A means of
redistributing field quantities between the particle decom-
position required by the push and the field decomposition
required by the field solver which entails substantially less
overhead could make dynamic load balancing useful in a
larger number of cases.

A more efficient parailel field solver would increase sub-
stantially the number of cases in which the particle push still
dominates the iteration loop, and hence it would make
dynamic load balancing of use. Recall that the field solver
time was dominated by the communication time involved in
the field data transpose required by the FFT, leading to a
poor overall code efficiency. If one uses an explicit finite-
difference method to advance the field equation, which does
not require a transpose, the efficiency of the field solver will
improve dramatically. Explicit finite-difference solutions of
Maxwell’s equation for electromagnetic scattering problems
have shown very high (>90% ) parallel efficiency [2]. The
only communication required in this case is the communica-
tion of the guard cells and the communication to move
data from the particle to the field decomposition, both of
which are much smaller than the transpose time. Thus the
method presented here should scale well to finite-difference
electromagnetic PIC codes.

Although this work has only treated a 1D parallel
decomposition, the basic scheme can be extended to higher
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dimensional decompositions. The generalization of this load
balancing scheme to 2D partitions could be done as a two-
stage decomposition. The 1D partitions we have discussed
here could be further subdivided along the direction
orthogonal to these divisions. Alternatively, . 2D load
balanced partitions could be created from the density
distribution using the recursive bisection algorithm [17]. In
a 3D PIC simulation, one-, two-, or three-dimensional
partitions could be created by either of these schemes. Thus
we conclude that the method presented here should lead to
an efficient parallel implementation of three-dimensicnal
electromagnetic PIC codes with dynamically changing
particle distributions.
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